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Procedure 4 
 

The Use of Precision Statistics 
 

1.  Scope 
This procedure defines the precision statistics that are provided with CEC test 
methods and describes how these might be used in practice.  In particular, the 
procedure describes how the precision of an estimate of a test parameter for a 
particular fluid (or the difference between two fluids), derived from one or more 
measurements, can be calculated from these statistics.  Tables and figures are given 
which will allow a user to determine a priori the probability of measuring a significant 
difference between a fluid and a specified value, or a significant difference between 
two fluids, as a function of the unknown true difference.  The procedure also 
describes the use of precision statistics in setting specifications and safety limits and 
in checking products for conformance against specifications. Absolute and relative-
to-reference specifications are discussed as are specifications involving multiple 
parameters or tests. 
 
The equations in this procedure are only valid for tests where within-laboratory and 
between-laboratory variations follow the normal distribution and do not increase or 
decrease as the level the parameter being measured increases.  The advice of SDG 
should be sought for methods where the variations are non-normal or the variability 
is not constant.  
 
 
2.  Definitions 
In this procedure the following definitions are used: 
Actual value1: the actual quantitative value for the prepared sample (the actual 
value only exists for fundamental physical or chemical properties such as density, 
concentration, temperature, etc.)  
True value: the value towards which the average of single results obtained by n 
laboratories tends, as n tends towards infinity  
Accuracy: the closeness of agreement between a test result, or the average value 
obtained from a series of test results, and the true value 
Bias: the difference between the true value and the actual value 
Laboratory bias: the difference between the expectation of the test results from a 
particular laboratory and the true value 
Precision: the closeness of agreement between independent test results obtained 
under stipulated conditions 
Repeatability r: The value equal to or below which the absolute difference between 
two single test results, obtained in the normal and correct operation of the same test 
method on identical material, may be expected to lie with a probability of 95% when 
conducted under the following conditions: non-consecutive tests with intervening 

                                                      
1 The actual value is referred to as the “known value” in ISO 4259 [2] which is slightly misleading as 
the actual value is not normally known 
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changes of test material, completed in a short time interval by the same operator at 
the same laboratory using the same apparatus2  
Site Precision r’: The value equal to or below which the absolute difference 
between two single test results on test specimens from the same fluid batch, 
obtained over an extended period of time, spanning at least a 15-day interval, by one 
or more operators in a single site location practicing the same test method on a 
single measurement system may be expected to lie with a probability of 95%3 

Reproducibility R: The value equal to or below which the absolute difference 
between two single test results obtained in the normal and correct operation of the 
same test method on identical material by operators in different laboratories may be 
expected to lie with a probability of 95% 
Test result: The final value of a test parameter for a particular sample obtained by 
following the complete set of instructions of the test method 
 
 
3.  CEC Precision Statistics 
The precision of a CEC test method is expressed by the repeatability r and 
reproducibility R for each parameter measured. The site precision r’ is also used on 
occasions as a measure of long-term repeatability at a particular laboratory.  
CEC uses the definitions of r and R in international standard ISO 5725 [1]4, viz. 

r r= 196 2 2. σ  and R L r= +196 2 22 2. σ σ  

where σ r  is the within-laboratory or repeatability standard deviation and σ L  is the 
between-laboratory standard deviation. 
Thus the  

Within-laboratory or repeatability standard deviation σ r  = r / 2.8 

and the  
Reproducibility standard deviation σ R  = R / 2.8 

Hence the 

Between-laboratory standard deviation σ L  = ( ) / .R r2 2 2 8− . 

The within-laboratory standard deviation should be estimated from the site precision 
r’ when considering differences between sets of results collected some time apart. 
The repeatability r may vary from laboratory to laboratory and so homogeneity needs 
to be checked when round robin data are analysed and new laboratories come on 
stream.  In this procedure, it is assumed that a common repeatability figure r can be 
assumed for each laboratory performing the test. 
                                                      
2 In CEC round robins, repeat tests on the same sample at the same laboratory must be conducted 
independently as if they were tests on different materials (see Procedure 1, section 5). Repeat tests 
on the same sample are not normally be conducted back-to-back, but if this is unavoidable then the 
full preparatory procedures required in each run of the test (e.g. flushing, recalibration, etc) must still 
be carried out between tests. This ensures that the repeatability estimate from the round robin 
provides an appropriate error estimate when comparing different fluids 
3 This procedure uses the symbol r’ for site precision.  This is more appropriate than the symbol R’ 
used in ASTM D6299 [3] as site precision is best thought of as long-term repeatability at a particular 
laboratory. Test monitoring data are normally collected under site precision conditions. 
4 ISO 5725 [1] uses the terms “repeatability limit” and “reproducibility limit” to describe r and R.  
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To be accepted as fit for use for the purpose(s) defined by the Management Board, 
CEC methods are required to achieve appropriate repeatability and reproducibility 
targets and discrimination levels as described in Procedure 3. 
Laboratories running CEC tests must demonstrate that they can obtain similar test 
result levels, repeatability and discrimination to the test development laboratory 
during the early stages of test introduction (see Procedure 3 section 3.5) and to the 
general laboratory population thereafter (see Procedure 2 section 1.14). 
CEC test methods may be used to estimate the true value of a test parameter for a 
particular sample or to estimate the difference in true values for two or more 
samples.  The accuracy of such estimates will depend on the experimental design, in 
particular the number and location of tests conducted, and the precision of the test 
method used. 
In an ideal experiment, the precision of the test method is estimated from the 
variations between sets of repeat measurements on the various samples in that 
particular programme.  However, the cost of many CEC methods, particularly engine 
tests, will often prohibit the collection of sufficient data to re-estimate precision. In 
such circumstances, the user has to rely on the precision estimates obtained in the 
most recent round robin.  
In this procedure, it is assumed for simplicity that the repeatability r and 
reproducibility R are known values.  In reality, these values or r and R will 
themselves be empirical estimates derived from round robin data and so will be 
subject to a degree of uncertainty.  The degree of uncertainty will depend on the size 
of the round robin programme, which determines the number of degrees of freedom 
available to estimate r and R.  Further details are given in Appendix B of Procedure 
1.  The precision statement in each CEC method shall state the number of 
laboratories participating in the round robin or reference testing programme, the 
number of samples tested and their mean values or range of mean values.  Degrees 
of freedom and confidence limits for r and R can also be stated. 
In this Procedure, it is assumed that the number of degrees of freedom is large when 
performing t-tests to determine whether parameter differences between one fluid and 
a specified value, or between two fluids, are statistically significant.  The upper 5% 
point of the t-distribution will thus be assumed to be 1.645 for one-sided tests and 
1.96 for two-sided tests.  The advice of SDG should be taken if more accurate critical 
values of t (and the critical differences CD in Sections 4 and 6) are needed 
dependent on the degrees of freedom available when estimating the standard error 
of the difference being tested.  Estimates of R in CEC tests are often based on fewer 
than 10 d.f. 
 
4.  Measurement of a Single Product 

The standard deviation of a single measurement of a test parameter X about the true 
value is 

RRrLXSD σσσσ ==+= 222)(  

If a single laboratory obtains k independent test results on samples of a single 
product under repeatability conditions then the standard error of the average value 
X  is 

2 2 1( ) 1R rSE X
k

σ σ  = − − 
 
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If N laboratories obtain k1, k , … kN independent test results on samples of a single 
product then the standard error of the average X of the laboratory averages is 

2 2

1 2

1 1 1 1 1( ) 1R r
N

SE X
N k k kN

σ σ
  

= − − + + +     
  

 
The values σ r and σ R  may be computed from the repeatability r and reproducibility R 
using the formulae 

σ r  = r / 2.8    σ R  = R / 2.8 

The value X  is significantly different from zero at P < 5% in a two-sided test if its 
absolute value exceeds the critical difference 

CD SE Xsided5% 2 196( ) . ( )− = ×  

where SE X( ) depends on the number of tests conducted, as detailed above. 

The value X  is significantly greater than zero at P < 5% in a one-sided test if X  
exceeds the critical difference 

CD SE Xsided5% 1 1645( ) . ( )− = ×  

Similarly the value X  is significantly less than zero at P < 5% in a one-sided test if 
X  is less than − −CD sided5% 1( ) . 

The critical values CD5% may be computed from the repeatability r and reproducibility 
R using the following formulae: 
(single measurement) 

CD sided5% 2( )−   =  
R
2

  =  R71.0  

CD sided5% 1( )−   =  059. R  

(k measurements at 1 laboratory) 

CD sided5% 2( )−   =  2 2 10.71 1R r
k

 − − 
 

 

CD sided5% 1( )−   =  2 2 10.59 1R r
k

 − − 
 

 

 
(k1, k2, … kN  measurements at N laboratories) 

CD sided5% 2( )−   =  2 2

1 2

0.71 1 1 1 11
N

R r
N k k kN

  
− − + + +     

  

CD sided5% 1( )−   =  2 2

1 2

0.59 1 1 1 11
N

R r
N k k kN

  
− − + + +     

  

 
If the value X  is being compared against a specified value A, then 
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SE X A SE X( ) ( )− =  

where SE X( ) is given by the formulae above.  Thus the measured difference 
( )X A−  is statistically significant at P < 5% in a one- or two-sided test if it is greater 
than the appropriate critical difference CD5% above.  
The critical values CD5% above may also be used to construct 95% confidence 
intervals for the true value µ of the test parameter.  A two-sided 95% confidence 
interval for µ is 

X CD X CDsided sided− ≤ ≤ +− −5% 2 5% 2( ) ( )µ  

A one-sided 95% confidence interval for µ takes the form  

µ ≥ − −X CD sided5% 1( )   (lower limit) 
or 

µ ≤ + −X CD sided5% 1( )   (upper limit) 

The value X  is significantly different from a hypothesised value µ0 at P < 5% in a 
one- or two-sided test if the value µ0 lies outside the appropriate one- or two-sided 
95% confidence limits constructed as above. 
It can be deduced from the above equations that to improve the precision of 
estimation of the true value µ for a single product, it is usually more effective to take 
repeat measurements at different laboratories than to perform repeat tests at a 
single laboratory in order to reduce SE X( ) and CD5% (unless r and R are similar). 

 
5.  Conformance with Specifications 

The one-sided limits in Section 4 may be used to check whether a product conforms 
with specifications.  
For example, a supplier who has no other source of information on the true value of 
a test parameter than a single test result X may consider that the product meets the 
specification, with 95% confidence, only if the result X is such that 

X ≤ AU - 0.59R (in the case of a single upper limit AU ) 
or 

X ≥ AL + 0.59R (in the case of a single lower limit AL ) 
 
Similarly, a recipient who has no other source of information on the true value of a 
test parameter than a single test result X may consider that the product fails the 
specification, with 95% confidence, only if the result X is such that 

X ≥ AU + 0.59R (in the case of a single upper limit AU) 
or 

X ≤ AL - 0.59R (in the case of a single lower limit AL) 
In each case, the margin may be reduced by performing repeat tests and replacing 
0.59R by the appropriate value of CD sided5% 1( )−  from Section 4.  The greatest 
reductions are obtained when the repeat tests are conducted at different laboratories  
(unless r and R are similar). 
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6.  Comparison of Two Products 

If a laboratory makes single measurements X1  and X2 on each of two products 
under repeatability conditions (same operator, same apparatus, same laboratory, 
short intervals of time) then the standard error of the difference is 

SE X X r( )1 2
22− = σ  

If that single laboratory makes k1 independent measurements on sample 1 and k2 
independent measurements on sample 2, then the standard error of the difference in 
means is  

2
1 2

1 2

1 1( ) rSE X X
k k

σ
 

− = + 
 

 

If a set of k1 independent measurements on sample 1 is made at one laboratory and 
a set of k2 independent measurements on sample 2 is made at a different laboratory 
then the standard error of the difference in means is  

2 2
1 2

1 2

1 1( ) 2 2 1
2 2R rSE X X

k k
σ σ

 
− = − − − 

 
 

Finally if N laboratories make sets of k1, k2, … kN independent measurements 
respectively on both samples then the standard error of the difference between the 
simple averages X1  and X 2  of the Nkkk +++ 21  measurements on each sample is 

N

r

kkk
XXSE

+++
=−

21

2

21
2

)(
σ  

The values X1  and X 2  are significantly different from each other at P < 5% in a two-
sided test if the absolute value of the difference X X1 2−  exceeds the critical 
difference 

CD SE X Xsided5% 2 1 2196( ) . ( )− = × −  

where SE X X( )1 2− depends on the number of tests conducted, as detailed above. 

The value X1  is significantly greater than X 2  at P < 5% in a one-sided test if the 
difference X X1 2−  exceeds the critical difference 

CD SE X Xsided5% 1 1 21645( ) . ( )− = × −  

Similarly the value X1  is significantly smaller than X 2  at P < 5% in a one-sided test if 
the difference  X X1 2−  is less than − −CD sided5% 1( ) . 

The critical values CD5% above may also be used to construct 95% confidence 
intervals for the true difference µ µ1 2−  between the values of the test parameter for 
the two samples.  A two-sided 95% confidence interval for µ µ1 2−  is: 

X X CD sided1 2 5% 2− − −( )   ≤  µ µ1 2−   ≤  X X CD sided1 2 5% 2− + −( )  

A one-sided 95% confidence interval for µ µ1 2−  takes the form  

µ µ1 2−   ≥  X X CD sided1 2 5% 1− − −( )   (lower limit) 

or 
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µ µ1 2−   ≤  X X CD sided1 2 5% 1− + −( ) (upper limit) 

The critical values CD5% may be computed from the repeatability r and reproducibility 
R using the following formulae: 
(single measurement) 

CD sided5% 2( )−   =  r 

CD sided5% 1( )−   =  0.84 r 

(samples tested at same laboratory) 

CD sided5% 2( )−   =  r
k k
1

2
1

21 2

+  

CD sided5% 1( )−   =  0 84
1

2
1

21 2
. r

k k
+  

(samples tested at 2 different laboratories)  

CD sided5% 2( )−   =  2 2

1 2

1 11
2 2

R r
k k

 
− − − 

 
 

CD sided5% 1( )−   =  2 2

1 2

1 10.84 1
2 2

R r
k k

 
− − − 

 
 

(N laboratories performing k1, k2, … kN  tests respectively on each sample) 

CD sided5% 2( )−   =  
Nkkk

r
+++ 21

 

CD sided5% 1( )−   =  
Nkkk

r
+++ 21

84.0  

The difference X X1 2−  is significantly different from zero at P < 5% in a one- or two-
sided test if the appropriate one- or two-sided 95% confidence limits constructed as 
above do not contain the value 0. 
The greatest reductions in the critical differences CD5% above are obtained by 
performing repeat measurements on the two samples at the same laboratory (or the 
same set of laboratories).  The comparison is then made within-laboratory and not 
between-laboratory.  Thus SE X X( )1 2− and CD5% depend solely on the repeatability 
r and not the reproducibility R. 
 

7.  Discriminating Power 

“Power” is the probability of measuring a significant difference between two products 
(or between one product and a specification) when a difference does indeed exist.  
Thus power is the probability of measuring values or sets of values in which the 
difference in means X X1 2−  (or the difference between the mean value for a single 
product X  and some specified value A) is large enough to be statistically significant 
at P < 5%.  Power is equal to  

Power = 1 - β 
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where β is the probability of a type II error, that is the risk of failing to detect a 
difference that actually exists. 
Power depends on: 
(a) how large the unknown difference in true values actually is,  
(b) the numbers and locations of tests conducted on each material (i.e. the 

experimental design), 
(c) the repeatability r and reproducibility R of the test method being used, 
(d) the prescribed significance level.  
When the repeatability r and reproducibility R of the test method are known, the 
standard error of the measured difference X X1 2−  or X A−  can be computed using 
the formulae given in Sections 6 and 4 respectively.  The power curve for the 
proposed experiment can then be obtained from Figures 1 (one-sided tests) or 2 
(two-sided tests), which show the probability of obtaining a significant difference as a 
function of the calculated standard error.  These curves were computed using the 
formulae 

1 2
1 2

( 1.645) 1.645
( )

P X X P Z
SE X X

 ∆
− > = < − + − 

  (one-sided tests) 

1 2
1 2 1 2

( 1.96) 1.96 1.96
( ) ( )

P X X P Z P Z
SE X X SE X X

   ∆ ∆
− > = < − + + > +   − −   

 

(two-sided tests) 
where Z is a standard normal variate with mean zero and standard deviation one and 
∆ is the unknown true difference (i.e. the value on the x-axis) expressed as a multiple 
of SE X X( )1 2− . 

Some specifications simply require a test material to give a better test result than a 
reference material.  Figure 3 shows the probability of obtaining a higher test result 
(or average test result) on product 1 than product 2 as a function of the true 
difference.  
In Figures 1 and 2, it can be seen that the probability of measuring a significant 
difference at P < 5% when no difference exists is indeed 5%, the probability α of a 
type I error.  The probability of measuring a significant difference at P < 5% is equal 
to 50% when the true difference is equal to the critical difference, i.e. 1.645 × 
SE X X( )1 2− (Figure 1) and 1.96 × SE X X( )1 2− (Figure 2).  To have a 95% chance 
probability of measuring a significant difference at P < 5%, the true difference would 
need to exceed 3.29 × SE X X( )1 2− in a one-sided test and 3.60 × SE X X( )1 2− in a 
two-sided test.  
Table 1 gives the true differences required for various stipulated power levels.  For 
example, to have a 90% chance or better of measuring a significant difference at P < 
5% in a one-sided test, the true difference would need to be at least 2.93 times the 
standard error of the measured difference, calculated as above. 
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To illustrate further the use of Figures 1 to 3 and Table 1, consider the simplest 
possible experiments where single measurements only are made on each sample.  If 
the interest is in measuring the test parameter for a single sample and comparing it 
with a specified value, then the standard error of the difference between the single 
measurement X and the specification is 

( ) / 2.8RSE X specification Rσ− = =  

Table 2 gives the true differences required for various stipulated power levels as a 
function of the reproducibility R.  To have a 95% chance or better of measuring a 
significant difference at P < 5%, in a one-sided test, that is a 95% chance of 
measuring a value X which betters the specification by at least 0.59R, the true 
difference would need to be at least 1.17 times the reproducibility R.  If X is 
compared with a hypothesised value in a two-sided test, it will be deemed 
significantly different from that value at P < 5% if it differs from it by more than 0.71R 

Table 1. Power curve percentiles: the difference in true values required for the 
probability of the desired event to be equal to the stipulated power level.  This 
table may be used for comparisons of two products or for comparing one 
product with a specification.  SE (difference) should be computed using the 
appropriate formula in Sections 6 or 4. 

Power 
level 

Probability 
β of type II 

error 

Desired event 
 

  Measured 
difference 

significant at 
P<5% (1-sided 

test) 
(> 1.645 × 

( ))SE diff  

Measured 
difference 

significant at 
P<5% (2-sided 

test) 
(> 1.96 × ( ))SE diff  

Measured 
difference 

 > 0 

0.99 0.01 3.97 × SE diff( )  4.29 × SE diff( )  2.33 × SE diff( )  

0.95 0.05 3.29 × SE diff( )  3.60 × SE diff( )  1.64 × SE diff( )  

0.9 0.1 2.93 × SE diff( )  3.24 × SE diff( )  1.28 × SE diff( )  

0.8 0.2 2.49 × SE diff( )  2.80 × SE diff( )  0.84 × SE diff( )  

0.7 0.3 2.17 × SE diff( )  2.48 × SE diff( )  0.52 × SE diff( )  

0.6 0.4 1.90 × SE diff( )  2.21 × SE diff( )  0.25 × SE diff( )  

0.5 0.5 1.64 × SE diff( )  1.96 × SE diff( )  0 

0.4 0.6 1.39 × SE diff( )  1.71 × SE diff( )  -0.25 × SE diff( )  

0.3 0.7 1.12 × SE diff( )  1.43 × SE diff( )  -0.52 × SE diff( )  

0.2 0.8 0.80 × SE diff( )  1.11 × SE diff( )  -0.84 × SE diff( )  

0.1 0.9 0.36 × SE diff( )  0.65 × SE diff( )  -1.28 × SE diff( )  

0.05 0.95 0 0 -1.64 × SE diff( )  
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in either direction. For there to be a 95% or greater chance of this happening, the 
true value would need to differ from that hypothesised by more than 1.30R in either 
direction. 
If the interest is in comparing the values of the test parameter for two samples by 
making single measurements on each, the best estimate of the difference between 
samples is obtained by taking the two samples at the same laboratory. The standard 
error of the difference of is then  

SE X X rr( ) / .1 2
22 196− = =σ  

If the tests on the two samples have to be conducted at different laboratories, the 
standard error of the difference is 

SE X X RR( ) / .1 2
22 196− = =σ  

 

Table 2. Single measurement on one product - power curve percentiles: the 
difference between true and hypothesised values required for the probability 
of the desired event to be equal to the stipulated power level.  These values 
are expressed as multiples of the reproducibility R of the test method. 

Power 
level 

Probability 
β of type II 

error 

Desired event 
 

  Measured 
difference 

significant at 
P<5% (1-sided 

test) 
(> 0.59R) 

Measured 
difference 

significant at 
P<5% (2-sided 

test) 
(> 0.71R) 

Measured 
difference 

 > 0 

0.99 0.01 1.42R 1.55R 0.84R 

0.95 0.05 1.17R 1.30R 0.59R 

0.9 0.1 1.05R 1.17R 0.46R 

0.8 0.2 0.89R 1.01R 0.30R 

0.7 0.3 0.77R 0.90R 0.19R 

0.6 0.4 0.68R 0.80R 0.09R 

0.5 0.5 0.59R 0.71R 0 

0.4 0.6 0.50R 0.62R -0.09R 

0.3 0.7 0.40R 0.52R -0.19R 

0.2 0.8 0.29R 0.40R -0.30R 

0.1 0.9 0.13R 0.24R -0.46R 

0.05 0.95 0.00R 0.00R -0.59R 
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Table 3 gives the true differences required for various power levels as a function of 
the repeatability r or the reproducibility R depending on where the tests are done.  To 
have a 95% chance or better of measuring a significant difference at P < 5%, in a 
one-sided test, that is a 95% chance of measuring a value X1 which differs from X2 
by at least 0.84r (or 0.84R) in a specified direction, the true difference would need to 
be at least 1.68 times r (or R). If X1 and X2 are compared in a two-sided test, the 
difference will be deemed significantly different at P < 5% if it differs by more than r 
(or R) in either direction.  For there to be a 95% or greater chance of this happening, 
the true values would need to differ by more than 1.84r (or 1.84R) in either direction. 
When tests on the two samples are conducted at the same laboratory, some thought 
needs to be given to the time scale over which the measurements are made.  It is 
assumed throughout this Procedure that this is similar to the time scale defining 
repeatability conditions in the round robin in which r was estimated.  If the time 
scales are different, then the methods in Part 3 of standard ISO 5725 [1] should be 

                                                      
5 CEC previously defined the discriminating power DP = 1.84R to be the true difference required for 
there to be a 95% probability of single test results on different samples at different laboratories 
differing by more than R. 

Table 3. Single measurements of two products - power curve percentiles: 
the difference in true values required for the probability of the desired 
event to be equal to the stipulated power level.  These values are 
expressed as multiples of the repeatability r of the test method.  When 
the tests on the two samples are performed at different laboratories, r 
should be replaced by the reproducibility R of the test method in this 
table. 

Power 
level 

Probability 
β of type II 

error 

Desired event 
 

  Measured 
difference 

significant at 
P<5% (1-sided 

test) 
(> 0.84r) 

Measured 
difference 

significant at 
P<5% (2-sided 

test) 
(> r) 

Measured 
difference 

 > 0 

0.99 0.01 2.03r 2.19r 1.19r 
0.95 0.05 1.68r 1.84r5 0.84r 
0.9 0.1 1.49r 1.65r 0.65r 
0.8 0.2 1.27r 1.43r 0.43r 
0.7 0.3 1.11r 1.27r 0.27r 
0.6 0.4 0.97r 1.13r 0.13r 
0.5 0.5 0.84r 1.00r 0 
0.4 0.6 0.71r 0.87r -0.13r 
0.3 0.7 0.57r 0.73r -0.27r 
0.2 0.8 0.41r 0.57r -0.43r 
0.1 0.9 0.19r 0.33r -0.65r 

0.05 0.95 0.00r 0.00r -0.84r 
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used to obtain a more appropriate measure of precision. Site precision, defined is 
Section 2 above, is an example of such a measure.  
 
Figure 1 

 
 
Figure 2 

 
 

Probability of finding a significant difference between two products (or between a single product 
and a specified value) in a one-sided test at the P < 5% significance level (power curve)
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Probability of finding a significant difference between two products (or between a single product 
and a specified value) in a two-sided test at the P < 5% significance level (power curve)
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Figure 3 

 
 
 

 
8. Setting of Specifications and Safety Limits 

8.1 Basic principles 
Specifications are limits on test parameters, set for example by regulatory authorities 
or motor manufacturers, which must be met before lubricants or fuels can be 
deemed acceptable for use in a particular context.  
”Absolute” specifications can take the form of a single limit, e.g. 

cam wear ≤ 10μm,  
or a double limit, e.g.  

tensile strength change = -40%±10%.  
“Relative to reference” specifications require a candidate fluid to perform better than 
a reference fluid and can take a number of forms, e.g.  

ring sticking test result ≤ reference result,  
piston merit test result ≥ reference result – 6, or  
viscosity increase test result ≤ 0.5 × reference result.  

Normally the two tests will be required to take place within a short time of one 
another at the same laboratory to minimize the risk of drift.  
The prime purpose of many specifications and safety limits is to stop fuels and oils 
entering the market which could 
 damage engines, and/or 
 harm the environment 
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Such specifications can involve secondary as well as primary parameters (as defined 
in Procedure 3 Section 1) and are often referred to as “safety limits”. It is not 
necessary for all the secondary test parameters to discriminate between reference 
fluids.  
Other specifications are used to define different performance grades for automotive 
applications. For example, the 2008 ACEA sequences require Noack evaporative 
loss ≤ 15%wt for category A1 and ≤ 13%wt for categories A3 and A5.  
Safety limits for both primary and secondary parameters are set at or below6 the 
value at which the risk of harm becomes unacceptable. This requires data or 
scientific experience / judgement correlating CEC test results with field performance. 
In many cases however, there may be little or no data available showing correlation 
between certain “no-harm” parameters, usually secondary measurements, and field 
data. The field problem of concern might be rare and most reference and candidate 
fluids might yield test results causing little worry. In such circumstances, there is 
benefit in looking at historical ranges of test results for both candidate and reference 
fluids. Care should be taken to examine results from a number of different 
manufacturers using a wide range of technologies. Some examples are shown in 
Section 8.5 

8.2 Effect of test-to-test variability 
Specification setters would like to fix limits to the actual or true value (as defined in 
Section 2) of the parameter of interest. In practice, however, this value can rarely be 
established exactly and conformance checks will depend on empirical test results 
which are subject to test-to-test variability. 
If a single measurement is made on a product, then 95% confidence limits for the 
true value are 

Measured value +/- 0.71R 
as shown in Figure 4. 

Figure 4. Two-sided confidence interval for the true value 

 

                                                      
6 Assuming harm is associated with high values 



Issue 3 – 19th March 2014  

  
   

Page 16 of 24 

However when checking conformance with one-sided specifications, it is more useful 
to work with one–sided confidence limits. Thus a tester who is only worried about 
high values might assert with 95% confidence that the true value is less than 

Measured value + 0.59R 
as shown in Figure 5. 
 

Figure 5. One-sided confidence interval for the true value 

 
It is important to have a test method with good reproducibility when testing 
conformance with absolute specifications. Figure 6 shows an example in which the 
measured value is below the point at which harm is thought to begin. When the 
reproducibility R is small then the precision is good and the tester has a high level of 
confidence that the product is safe. However when the reproducibility R is large then 
the precision is poor and there is a good deal of uncertainty about the true value. 
While the product could indeed be safe, there is also a real risk that it could be 
harmful. 
 

Figure 6. Effect of reproducibility on our confidence that a fluid is safe 
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International Standard ISO 4259 [2] suggests a starting point as regards how good 
the reproducibility R needs to be. It states that for a 2-sided specification of the form 
AL ≤ X ≤ AU, the specified range AU − AL shall not be less than 4R where R is the 
reproducibility of the test method adopted. Thus if the range is fixed then R needs to 
be ≤ (AU - AL)/4. 
If the specification can only be failed in one-direction (e.g. if there is an implied lower 
bound of zero in a specification of the form X ≤ AU), then the specified range (stated 
or implied) shall not be less than 2R. Thus if the limit AU is fixed then R needs to be 
less than AU /2. 
The reproducibility R determines the specification limit or range that the test method 
is capable of supporting. However it would clearly be imprudent to set a specification 
limit based on 2R or 4R if R is so large that this would risk harmful product reaching 
the field. In such cases, the test method (or parameter) is not fit for purpose and 
should not be approved by the CEC Management Board. The aim should be to 
improve the precision of the test method by setting a reproducibility target based on 
the desired limit, e.g. the point where harm begins, and, for example, the 2R or 4R 
rule (see Procedure 3, Appendix C). In some cases, a combination of improved 
precision and widened limits might be appropriate. 
Poor test method reproducibility also increases the risk of acceptable products failing 
the specification due to test-to-test variability, leading to unwarranted retesting 
and/or re-engineering costs for the producer. A balance therefore needs to be drawn 
between the risk of good products failing and bad products passing the specification. 
Issues which need to be taken into account include (a) the precision of the test 
method or parameter, (b) how critical the parameter is, (c) how well the point of first 
harm is known, (d) the candidate retesting rules and (e) the number of parameters 
mentioned in the specification. 
Specifications are not always set at the point at which a required level of 
performance is achieved or, conversely, harm is thought to begin. In the example in 
Figure 6, when the precision is poor (R large), the tester would need to measure a 
lower value for all parties to be confident that the fluid is safe (see Figure 7). If the 
parameter is critical, the specification setter might be inclined to introduce a “margin” 
to cater for test-to-test variability and thus set the specification limit lower than the 
desired threshold. A margin of 0.59R is required for 95% confidence that the true 
value is below a particular bound. 
Margins might also be introduced to account for uncertainty in our knowledge of the 
point of first harm. However lowering the specification limit in this way increases the 
risk of good products, which cause no harm, failing the specification. Therefore a 
careful balance needs to be made between the two kinds of risk. 
Margins might also be introduced to compensate for rules which allow the retesting 
of candidates since these can increase the risk of a bad candidate passing the 
specification. 
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Figure 7. Margin needed for 95% confidence that a product causes no harm 

 

8.3 Relative-to-reference specifications 
 “Relative to reference” specifications do not set absolute limits AL or AU but require a 
candidate fluid to perform better than a reference fluid and can take a number of 
forms, e.g. 

ring sticking test result ≤ reference result,  
piston merit test result ≥ reference result – 6, or 
viscosity increase test result ≤ 0.5 × reference result. 

Tests need to have good repeatability if they are to be used for checking 
conformance with relative specifications. Figure 8 shows that when the repeatability 
is small then there is little doubt as to which is the better fluid. 
 

Figure 8. Discrimination between candidate and reference fluids when the 
repeatability r is small. 
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If the repeatability is poor, then there will be a good deal of uncertainty when the 
candidate and reference give similar results. This is illustrated in Figure 9. 
Appendix A of Procedure 3 describes how appropriate repeatability targets might be 
set for a parameter which is going to be used in a relative-to-reference specification.  
 

Figure 9. Discrimination between candidate and reference fluids when the 
repeatability r is large. 

 
 
In the example in Figure 9, when the precision is poor (r large), the tester would 
need to measure a larger difference between the two fluids for all parties to be 
confident that the fluid is safe (see Figure 10). 

 
Figure 10. Margin required for 95% confidence that the candidate fluid is better than 

the reference. 
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If the parameter is critical in the sense that the candidate must be no worse than the 
reference, the specification setter might be inclined to introduce a “margin” to cater 
for test-to-test variability and require the candidate to beat the reference by this 
margin in order to reduce the risk of a poor product passing the specification. Thus 
the specification might take the form 

Candidate result < Reference result – x 
or 

Candidate result < k × Reference result (where k < 1) 
 
A margin of 0.84r is needed for 95% confidence that the candidate is the better fluid. 
Specifications of the above form might also be used to define different performance 
levels. 
Margins might also be introduced to account for uncertainty in our knowledge of the 
point of first harm and how good the reference is perceived to be. However lowering 
the specification limit in this way increases the risk of good products, which cause no 
harm, failing the specification. Therefore a careful balance needs to be made 
between the two kinds of risk. 
Ideally the candidate and reference fluids ought to be tested consecutively within a 
short time of one another. Indeed some tests do involve the direct comparison of the 
two fluids. However some tests are so expensive that it is not realistic to perform a 
reference test immediately before every single candidate test. In such 
circumstances, several candidates may be compared against the most recent 
reference (or the average or moving average of recent references). The method will 
then require good “site precision”, that is longer-term repeatability (see Section 2 for 
definition). When determining the maximum number of candidate tests and elapsed 
time to be allowed before a new reference has to be conducted, the specification 
setter should take into account historical test monitoring and site precision data.  
Absolute specifications are normally preferred to relative-to-reference specifications 
as only one test is required and the result is only subject to experimental error from 
that one test. However in tests where there is a high level of laboratory-to-laboratory 
variability, e.g. when the reproducibility R exceeds the repeatability r by a factor 
rather more than 1.4 (i.e. √2)7 or more, then relative-to-reference specifications might 
be preferred. Examples are tests where laboratories might have particularly mild or 
particularly severe installations. The laboratory bias cancels out when two results are 
compared. Relative-to-reference specifications might also be considered in 
exceptional situations where the test performance threshold is uncertain in absolute 
terms, but the reference fuel perceived to be borderline. The threshold will often be 
uncertain in the early stages of test development process when the method is only 
installed in a limited number of laboratories.  

8.4 Specifications involving multiple parameters or multiple tests 
The risk of acceptable products failing specifications is particularly acute when these 
involve multiple parameters, or indeed multiple tests as for example in the ACEA 
sequences. The exact risk is difficult to quantify as this will depend on (a) the true 
value of the various test parameters, (b) the precision of the various test methods 
and (c) the correlation between the various measurements. The risks are 

                                                      
7 The standard error of the difference between two measurements is lower than the standard deviation 
of a single measurement if R/r >√2. However any precision gain must be offset against the cost of the 
extra measurement.  
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exacerbated when specifications include parameters with poor precision. The 
precision of all parameters used in a specification, be they primary or secondary, 
should be evaluated via round robins and/or test monitoring. 
 

Figure 11. Specification based on two correlated factors 
 

 
 
Figure 11 shows an artificial example with two correlated parameters and a 
specification limit of 10 units maximum on each. Seven candidates fail the 
specification on Parameter 1, if this is examined first, then another three 
subsequently fail on Parameter 2. Similarly if Parameter 2 is examined first then nine 
tests fail due to Parameter 2 and one further test fails due to Parameter 1.  Thus the 
inclusion of both parameters reduces the probability of passing the test. It could of 
course be that all 10 failing candidates could potentially cause problems and so 
deserve to fail. On the other hand, some of the 10 may be safe and the failures may 
be due to measurement error and the increased risk engendered by the second 
parameter. Therefore there is an argument for using just one of these correlated 
parameters in the specification – or basing the specification on their sum or average 
if these are measuring similar phenomena in the same units. 
While Figure 11 is an artificial example, there are a number of real CEC tests with 
highly correlated parameters.  For example, in the OM646LA cam wear test, both 
outlet and inlet wear are measured. The two measures are highly correlated but 
outlet wear has better precision and discrimination. Therefore the WG and 
Management Board decided only to approve outlet wear as a primary parameter. 
Using the average or sum of the two cam wear measures was considered as an 
alternative but was discarded because of the high variability in inlet wear.  
It is worth noting that the inter-parameter correlation in Figure 11 is less apparent 
when we just look at the reference fluids as these cover a narrower performance 
range. Therefore the degree of correlation might be underestimated in round robin or 
test monitoring exercises.  
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8.5 Examples of secondary “no-harm” parameters 
This section considers a number of examples of measurements which might be 
considered as secondary “no-harm” parameters and discusses which of these might 
be suitable for approval by the CEC Management Board. The parameter needs to be 
considered in tandem with the likely safety limit.  
Figure 12 shows the cylinder liner wear values measured for the two reference oils 
and a large number of candidates in the OM646 diesel engine wear test. The 
candidate data in Figures 12 and 13 are taken from the ATC-ERC data base and are 
shown by their kind permission. 
Cylinder liner wear could be approved is a secondary/safety parameter in this test. 
The upper safety limit of 5.0 microns maximum set by ACEA is higher than all the 
test and reference results and so is unlikely at present to pose a serious risk to 
producers or consumers. And the reproducibility R is 1.9, which is lower than 
5.0/2 = 2.5, and so conforms to ISO 4259 guidelines. This specification provides 
protection to the vehicle manufacturer in the event that a new oil is developed which 
causes significantly higher levels of cylinder liner wear.   
 

Figure 12. Cylinder liner wear in the OM646 diesel engine wear test 
 

 
 
Figure 13 shows the maximum bore polish measurements from the same test. The 
reference results are highly scattered relative to the specification width (and 
interestingly worse than most of the candidates), indicating that the reproducibility is 
very poor. A specification limit of 3% cannot be entertained without a huge 
improvement in precision. If the specification really needs to be set at 3% to avoid 
the risk of harm, then the maximum bore polish parameter is unfit for purpose and 
should not be approved. As the reproducibility R for the reference oils is about 5.4, 
the 2R rule suggests that the method would only support a limit of 11% or higher.  
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Figure 13. Maximum bore polish in the OM646 diesel engine wear test 
 

 
 

Figure 14. Test results on a potential secondary “no-harm” parameter 
 

 
 
Figure 14 shows a hypothetical example of data obtained on a secondary “no-harm” 
parameter, which takes non-negative values. In this case there are some 
performance differences between the fluids; however there is poor discrimination 
between the reference fluids.  
The fitness for purpose of this measurement as a “no-harm” parameter will depend 
on where the safety limit is likely to be set. In this example R = 2.8, so ISO 4259 
suggests that the safety limit should be at least 2 × 2.8 = 5.6. Suppose that through 
consideration of the value at which the risk of harm becomes significant, the limit is 
required to be set at 16 units. This comfortably meets the ISO 4259 requirement and 
all the candidates and references pass the test. Therefore test parameter is fit for 
purpose as a secondary parameter, similar to cylinder liner wear in Figure 12. 
If, on the other hand, the point of first harm is believed to be 8 units and the limit is 
set there, then the specification still meets the 2R rule but many of the Reference 2 
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results would be failures. This raises a number of concerns. While reference fluids 
are often chosen to be of borderline performance vis-à-vis primary parameters, they 
are normally expected to produce passes on “no-harm” parameters. If reference 2 is 
a realistic fluid, then significant numbers of candidates might fail an 8-unit limit in 
addition to the references, as indeed is the case in this example. This particular 
parameter thus becomes of critical importance in passing the test. It is clearly 
undesirable to have a specification involving a secondary/safety parameter that 
produces such a high number of failures and this should not be approved. 
If an intermediate value (e.g. 12 units) is proposed as the safety limit, then there will 
need to be a more detailed consideration of the situation. In the example in Figure 
14, a small number of candidates fail this limit but all the reference results are 
passes. The parameter might still be judged suitable as a safety parameter if it is 
reasonable to expect a small number of candidates to be potentially harmful and 
thus fail. If this is not the case, then there may need to be an improvement in test 
precision and/or an adjustment to the limit. 
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