Methods for testing biodegradation of lubricants

Umweltverträgliche Schmierstoffe 24.11.2010-26.11.2010

TAE Esslingen

November 2010

Dr. Ben Müller-Zermini

The <u>Coordinating European Council</u>

for the Development of performance tests for fuels, lubricants and other fuels

"CEC is an Industry-based organisation which develops Test Methods for the performance testing of Automotive Engine Oil, Fuels & Transmission Fluids."

engine tests	rig tests	laboratory tests
--------------	-----------	------------------

The Coordinating European Council for the Development of Performance Tests for e Development of Performance Tests for Fuels, Lubricants and Other Fluids

The <u>Coordinating European Council</u>

for the Development of performance tests for fuels, lubricants and other fuels

Quality Surveillance of CEC

The quality standards of CEC are very high:

- Steady monitoring of results coming from mandatory tests with Reference Oils
- Active Surveillance group for each test method
 - Discussion and removal of arising problems
 - Arrange and conduct regular Round Robin Tests
- Every participating laboratory must be certified according to ISO 17025
- Online Test Monitoring System since 2009
- Several Support Groups to assist Development Groups in difficult questions

Biodegradation Test Procedure CEC-L-33-A-93 (unsupported)

Preparation of flasks:

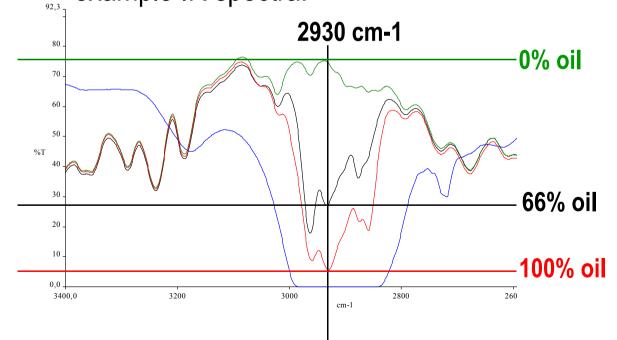
0-day flasks	21-day flasks	poisoned flasks
3 flasks	3 flasks	2 flasks
no loss → 100%	biotic and abiotic loss	abiotic loss

Extraction of flasks:

with Freon or Tetrachloroethylene

Analysis of extract:

Infrared spectroscopy


→ Determination of oil loss

CEC-L-33-A-93 Analysis

Extraction solvent must not have C-H-bonds

 only a few solvents can be used such as 1,1,2-Trichlorotrifluoroethane (Freon) or Tetrachloroethene

example IR spectra:

Freon, without oil 21 day flask 0 day flask

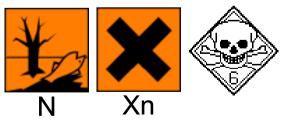
solvent which contain C-H bonds → not applicable

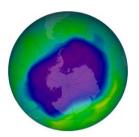
November 2010

Dr. Ben Müller-Zermini

Folie 5

CEC-L-33-A-93 Problems


Freon destroys ozone in atmosphere (it is a CFC!!)


С

laboratory work with Freon is difficult

 \rightarrow volatile liquid with high density

- Freon is very expensive (750 € / 2,5 L)
- Tetrachloroethene is toxic

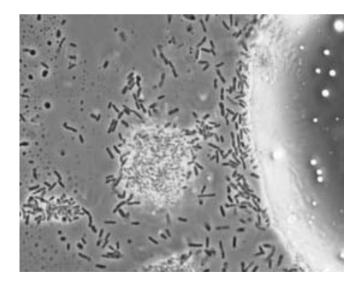
Alternative analysis CEC-TDG-L-103

Using gas chromatography instead of infrared spectroscopy like in DIN EN ISO 9377-2 (H 53):

Determination of hydrocarbon oil index (hydrocarbons in water)

infrared spectroscopy - IR	gas chromatography - GC
determination of C-H bonds	determination of C-H bonds
because of absorbance of infrared	because of combustion after
light \rightarrow only a few solvents	separation in components \rightarrow
applicable	many solvents applicable

Alternative analysis CEC-TDG-L-103


- In a mini round robin test CEC-TDG-L103 showed good correlation between GC and IR analysis
- In this test the results obtained from GC analysis were even more precise than the results obtained from IR analysis

	IR	GC
R (RL110)	6,2	3,5
R (TMP-Ester)	8,4	5,1

Second Problem: Sample introduction CEC-TDG-L-103

For a fast biodegradation the sample must be fine dispersed in the water phase. Bacteria cannot enter in oil phase, only oil/water interface can be used as food.

In CEC-L-33-A-93 mother solution solvent was Freon. Due to it's high density it kept the test oil on the bottom flask and led to a fine dispersion of oil in water.

Second Problem: Sample introduction CEC-TDG-L-103

How can oil be dispersed in water without Freon?

possible solutions	possible problems
using a solid carrier, e.g. glass fibres or sand	extraction of oil residues from carrier not in all cases possible
using polar solvents for mother solution, e.g. esters	oil sample solubility ?
using detergents or emulsifiers	extraction step difficult → phase separation!
ultrasonic sound	only short-term efficiency

Results of method development CEC-TDG-L-103

Results of method development CEC-TDG-L-103:


Sample preparation in polar solvent \rightarrow homogenous dispersion

Reduction of sample size \rightarrow less chemicals necessary

Extraction with a hydrocarbon \rightarrow not dangerous for the environment GC-analysis \rightarrow high precision

unpolar hydrocarbon

CEC-TDG-L-103 time schedule

End of 2010

- Conclusion of phase 1
- Approval of phase 1 Q1 2011
- Round Robin Test (phase 2) Q2 2011
- Conclusion of phase 2
 Q3 2011
- Approval of phase 2
 Q4 2011